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ABSTRACT 
The increasing amount of information shared online, not least on social media, in the form of unstructured 
text data provides an opportunity to complement traditional sources of cyber threat intelligence. As such vast 
volumes of data cannot be processed manually, we explore some possibilities of using machine learning to 
assist in the analysis. We specifically focus on the retrieval of information related to named threat actors. By 
fine-tuning existing language models to specific downstream tasks, based on pseudo-automatically 
annotated data, models for detection and extraction of previously unseen threat actors are obtained. We 
perform multiple evaluations under varying conditions, some of which suggest the models are indeed 
capable of producing results that could be useful in a setting of semi-automatic analysis. In addition, we 
view this a case study of the application of general language models to a niche and domain-specific task, 
and reflect on some more general lessons learned. 

1.0 INTRODUCTION 

Threat intelligence is an integral part of cyber defence. Logging and monitoring of technical systems are 
traditional sources of cyber threat intelligence (CTI). The increasing amount of information shared online, 
not least on social media, provides an opportunity to complement traditional sources to improve situational 
awareness in the cyber environment. Leveraging these new sources at scale requires an ability to sift through 
vast amounts of unstructured data at a much higher rate than any analyst could manage. Hence, there is a 
need for semi-automatic analysis, where the strengths of the analyst's mind are combined with the processing 
power of computers. 

Recent developments in natural language processing (NLP) and machine learning (ML) have provided 
powerful and versatile language models which represent a general understanding of language, obtained 
through massive amounts of text data and computing power. These models can be fine-tuned on much 
smaller amounts of data in order to learn a specific task. In this work we explore the possibilities of applying 
such language models to the CTI context, in particular we focus on the task of automatically identifying 
(previously unseen) cyber threat actors mentioned in text. In addition to the CTI-related benefits of such a 
capability, this also serves as a case study of the application of general language models to a niche and 
domain-specific task, for which pre-existing data sets and evaluation benchmarks cannot be assumed to be 
available. 

2.0 BACKGROUND 

Previous work on automatic extraction of CTI from large amounts of OSINT text data include a system 
presented in [1]. This system is capable of generating warnings regarding certain types of cyber threats based 
on data from Twitter and darkweb forums, using a term- and dictionary-based text analysis approach. The 
effectiveness of the method is demonstrated in two scenarios, related to vulnerabilities and data breaches 
respectively. 
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In this work we use pre-trained language models. In NLP, language models are machine learning models that 
learn a probabilistic representation of language. These models train in an unsupervised fashion, where the 
model is given a corpus of text and an unsupervised pretext task. Pretext tasks are tasks that do not require 
any human annotation. A common example is the Language Model Objective (LMO), where the model is 
tasked with predicting the next word in a given sequence of text. The purpose of pretext tasks is not to solve 
the task itself, but to prepare the model for fine-tuning on a downstream task. 

Most recent language models are based on a form of neural network called the Transformer [7]. Unlike 
previous methods, which process input-sequences one element at a time, the Transformer can process all 
elements in the sequence in parallel. This more efficient form of text processing has made it possible to use 
more training data and larger models. This, in turn, has contributed to Transformer-based language models 
achieving state-of-the-art performance in various NLP tasks.  

In this work we evaluate four different Transformer-based language models.: Bidirectional Encoder 
Representation from Transformer (BERT) [2] is the approach that popularized pre-trained transformers. 
BERT uses two pretext tasks, Masked Language Model (MLM) objective and Next Sentence Prediction 
(NSP). For MLM, a subset of tokens in the input texts are masked, and the model must predict the original 
tokens. In NSP, the model predicts if two text sequences follow each other in the training corpus. All models 
used in this paper, except for DistilBERT, have pre-training setups using two pretext tasks. BERT is 
available in two sizes: BERT-base model with 110 million parameters and BERT-large with 340 million 
parameters. Due to hardware constraints during both training and evaluation, we use the smaller version, 
BERT-base. This model is pre-trained utilizing a combination of BookCorpus1 and English Wikipedia. 

RoBERTa [4] is an improved version of BERT with minor adjustments to the text representation, training 
schema, and the training corpora. While the original BERT model was trained on English Wikipedia and 
BookCorpus, RoBERTa was, in addition, trained on about 160GB of news articles and web text. RoBERTa 
also differs in how it represents text, using a Byte Pair Encoder (BPE) tokenizer [6]. The BPE is better at 
handling out-of-vocabulary words than BERT's WordPiece tokenizer, thus making it suitable for online texts 
with diverse vocabularies. Similar to BERT, we use the smaller version with 110 million parameters. 

DistilBERT [8] is a distilled version of BERT. Distillation, in the context of machine learning, is the process 
of training smaller models (students) with the output of larger models (teachers) as input. Distillation can 
help reduce the size of the model while still retaining its performance. The smaller size of the models can 
prevent overfitting on downstream tasks. DistilBERT is trained using the output of BERT-base and contains 
40% fewer parameters while still retaining circa 97% of BERT-base's performance. 

BERTweet [5] is a modified version of RoBERTa pre-trained on 850 million English language tweets. 
BERTweet also has a unique tokenizer and pre-processing scheme to handle commonly occurring elements 
of tweets, such as hashtags, emojis, and usernames. 

3.0 METHOD 

Before a language model can be fine-tuned, a learnable task must be defined, and data reflecting the concepts 
of that task obtained. We use the STIX (Structured Threat Information Expression)2 data format as a model 
of the CTI context, and as starting point for identifying types of information which would be of interest to 
find. Using an existing and established framework not only saves time and effort, but also helps to facilitate 
compatibility between information obtained through structured and unstructured data. STIX consists of a 
number of domain objects (e.g., Threat Actor, Attack Pattern, Malware), along with attributes, and 
relationships between objects. Two of these domain objects are of particular interest here, Threat Actor and 
                                                      

1  S. Kobayashi, Homemade BookCorpus, 2018. 
2  Introduction to STIX, https://oasis-open.github.io/cti-documentation/stix/intro.html. 

https://oasis-open.github.io/cti-documentation/stix/intro.html
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Intrusion Set. The former represents the actors (e.g., individual, group, organization) behind the threat, 
whereas the latter is a more abstract representation of the threat itself. They both, however, relate to named 
entities. While in theory the difference is well defined, that does not guarantee that it is reflected well in data 
collected in-the-wild. Based on this observation it was decided that the object of study, from now on threat 
actor, should cover the concepts of both STIX Threat Actor and STIX Intrusion Set.3 With the task defined 
the relevant data set can be crafted (Section 3.1) and machine learning models trained (Section 3.2). 

3.1 Crafting the Data Set 
The raw data is collected through the Twitter steaming API, based on a set of generic cyber-related keywords 
such as "cyber" and "malware". This generates a large and highly imbalanced set of data, in which only a 
small fraction of the instances are related to threat actors. Supervised machine learning requires labelled data, 
in this case positive examples of tweets mentioning threat actors, and negative examples with no such 
mentions. Manual annotation of data is typically very time consuming, and therefore a potential blocker in 
the process of applying ML to specific tasks. We instead opt to explore the possibilities of using rule-based 
NLP techniques to annotate data in a pseudo-automatic4 fashion (Section 3.1.1), combined with a manually 
supervised data cleaning effort (Section 3.1.2). We use only the text content of the tweets, and no meta-data. 

3.1.1 Pseudo-Automatic Annotation 

Rule-based NLP techniques depend on manually defined language patterns and are therefore relatively 
simple and limited. As opposed to data-driven techniques, however, they have the benefit of not requiring 
any data upfront. For this reason, they are valuable as a quick way of starting data collection and exploring 
new data. With regards to threat actors, rule-based NLP is an efficient tool for finding mentions of actors 
whose names are already known. We are thus able to automatically sort downloaded tweets into two 
categories, texts which contain the name of a known threat actor, and texts which do not. While this 
annotation method undoubtedly saves time and effort, it also increases the risk of inaccurate labels. Any 
tweets containing (only) unknown threat actors, i.e., names that are not "on the list", will become false 
negative examples. A false positive example is created when the name of a known threat actor also has other 
meanings and is used in a different context. 

3.1.2 Data Cleaning 

The initial pseudo-automated annotation has a high rate of false positives. For example, texts like "Don't 
forget our Platinum Cyber Mondays Special Sale" are given positive labels due to the words cyber (a Twitter 
stream keyword) and Platinum (also the name of a threat actor). To reduce the impact of this problem, we 
first manually inspect a subset of the positive tweets. Based on these false examples, we construct additional 
word-based filtering rules to remove reoccurring errors. 

Furthermore, a large bulk of cyber tweets are produced by automated Twitter accounts which retweet cyber-
related news articles. As a result, our initial data set contains multiple tweets referencing the same original 
article but generated by different accounts. Such tweets are often identical – differing only in how much of 
the original article they cite, the hashtags they use, and the format of any URLs. The size of these groups of 
near-duplicate tweets, hereafter referred to as duplicate groups, can range from 2 to 15. These duplicate 
groups can cause a wide range of problems during both training and evaluation. They can take up a large 
fraction of all samples for less common threat actors, thus likely overfit the model to those tweets. Similarly, 
if the evaluation set contains many duplicates, it can skew the evaluation results. 

                                                      
3  While this to some extent invalidates the information compatibility argument made earlier, the ambiguity here is at least well 

defined, and could for example be resolved by an analyst in a setting of semi-automatic analysis. 
4 We use the term pseudo-automatic to emphasise the fact that the resulting set of labels is an approximation of the truth, and 

that the process is paired with a step of manually supervised data cleaning to reduce the number of incorrect labels. 
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We utilize MinHash [10], a Locality Sensitive Hashing algorithm that finds similar documents in close-to-
linear time to remove these duplicates. We use the implementation found in the datasketch python library5. 
Since we are looking for near-perfect copies, we use a large shingle size of k=9. If two tweets have shingle 
sets with a Jaccard similarity [3] over 0.4, we regard them as duplicates. To find all duplicates of a tweet, we 
conceptualize the tweets in our data set as a graph, where tweets are nodes, and two tweets are connected if 
they are duplicates. We then find all connected components by traversing the graph using Depth First Search, 
and keep only the longest tweets in each connected component, discarding the remaining tweets. 

Finally, we clean up the contents of each tweet. Some distracting elements – hyperlinks, usernames, and e-
mail addresses – are replaced with corresponding masking tokens since they do not contain task relevant 
information. Similarly, emojis are transformed to text descriptions, e.g., 👍👍 is converted to :thumbs_up. This 
allows models that do not have emojis in their vocabularies to understand the sentiment of the character. 

3.2 Fine-Tuning Language Models 
The task of finding named threat actors mentioned in text is divided into two subtasks. The first, which we 
call threat actor detection, is a binary classification task. The objective is for the model to determine if a 
given text (tweet) mentions a threat actor or not. The goal of the second task, which we call threat actor 
extraction, is to identify the name of the threat actor. 

3.2.2 Data Splits 

The purpose of using machine learning in the threat actor context is to obtain the ability to automatically find 
new threat actors6 when mentioned in text. We therefore want to avoid a situation where the models just 
memorizes the actual names of the threat actors in the training data. We also want to ensure that evaluation 
reflects the models’ ability to generalize to previously unseen threat actor names. To this end we construct 
the training, validation, and test splits of our data so that no threat actor name occurs in more than one split. 
The threat actors in our data set have a power-law-like distribution – a small minority of threat actors make 
up the bulk of positive examples. To create the splits, we sort the threat actors based on frequency of 
occurrence in the data set. For the training split, we select the most frequent threat actors and their 
corresponding tweets until we have acquired at least 80% of all positive tweets. From the remaining threat 
actors we keep selecting the most frequent until we have reached at least 10% of all positive tweets for the 
validation split. The remaining threat actors are then used for the test split. Any tweet containing actors from 
two or more splits is then removed to prevent overlap. The resulting training split included 16 different 
actors, the validation split 6, and the test split 48. A total of around 3300 positive tweets were used (reduced 
from over 8000 through the cleaning process). 

3.2.3 Continued Pre-Training 

Except for BERTweet, our pre-trained language models are pre-trained on corpora which share little-to-no 
similarity with our target domain of cyber tweets. As a result, these models are likely to experience a 
domain shift when fine-tuned on our data, causing them to underperform. One way to tackle this is 
continued pre-training [11]. The idea is to continue unsupervised pre-training on a new data set sampled 
from the target domain. This continued pre-training adjusts the model to the target domain, thus 
diminishing the domain shift experienced by the model during subsequent fine-tuning. 
 
For this reason, additional data for continued pre-training was sampled from the downloaded cyber tweets. 
Again the previously described data cleaning method was used, and tweets that overlapped with the 

                                                      
5  E. Zhu och V. Markovtsev, ekzhu/datasketch: First stable release, Zenodo, 2017. 
6  All names of threat actors that are known to us can easily be listed and thereafter found in text through the use of rule-based 

NLP techniques, we do not need machine learning for that. 
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annotated data set were filtered out. To investigate how the size of the pre-training set affects downstream 
performance, we compiled two data sets of different sizes – one with 25,000 tweets and one with 250,000 
tweets. We then generated three different instances for each of the four language models, one with no 
additional pre-training and one for each pre-training data set. The Masked Language Model-objective was 
used as pre-training objective. 

3.2.4 Threat Actor Detection 

The task of threat actor detection entails classifying whether a tweet contains one (or more) mentions of a 
threat actor or not. We train each language model with the data splits described in Section 2.2.2. Negative 
examples for each split were sampled from the set of downloaded cyber tweets. To prevent overfitting to a 
small set of negative samples, we used a ratio of 4-to-1 negative-to-positive samples in the training set.7 A 
larger fraction of negative training than that was observed to produce very low recall, while a much smaller 
fraction increased the risk of the model overfitting. For the validation and test set the distribution between 
positive and negative examples was kept even. 

3.2.5 Threat Actor Extraction 

Threat actor extraction is a token-level8 classification task in which each token is either part of a threat actor 
name or not. For token-level annotation, the tweets are tokenized and the tokens overlapping the known 
threat actor names are given a positive label. Training is similar to the detection task, except for an additional 
dropout layer between the token output and the final classifier layer. Due to time constraints, for this task we 
use only the RoBERTa language model since its tokenizer is the easiest one to extract correct labeling from. 
To reduce the task's difficulty, we assume that each tweet the model receives during inference contains at 
least one threat actor, and therefore only include such tweets during training. We consider this simplification 
justified since the threat actor detection model is meant to solve the task of filtering out tweets that mention 
threat actors.9  

3.2.6 Training and Hyperparameter Tuning 

As is standard when training Transformers [7], we start with a warmup phase – the learning rate is initialized 
to close to 0 and increases until it reaches the maximum learning rate after n steps. We also use linear 
learning rate decay, where the learning rate decreases after each step until it reaches 0. All model instances 
are fine-tuned for a single epoch. We perform hyperparameter tuning over four parameters – weight decay 
factor, number of warmup-steps, maximum gradient norm, and maximum learning rate. For the extraction 
task we also search for the optimal dropout rate for the final classification layer. We use Bayesian 
Optimization to explore the parameter space10. For each model, we perform 50 iterations and select the 
model which achieves the highest F1-score on the validation set. 

                                                      
7  It is worth noting that this still constitutes a significant overrepresentation of positive examples, compared to the natural 

distribution. 
8  Before text is “read” by a language model, the input string is split into continuous segments known as tokens, often consisting 

of words or sub-words. Different models have different ways of doing this, e.g., splitting on white space or splitting based on 
a pre-defined vocabulary. Rare words, such as threat actor names, tend to be divided into mutliple tokens. This is why threat 
actor extraction is performed on token-level, rather than word- or character-level. 

9 When we later deploy the models, we first let the detection model find positive samples in a stream of tweets, which are then 
analysed by the extraction model. 

10  We used the hyperparameter optimization library Optuna [9]. 
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4.0 RESULTS 

Two different sets of data are used to evaluate the performance of the models. The first is a held-out partition 
of the pseudo-automatically annotated data that was used for training, a common practice in the field of 
machine learning. This evaluation is described in Section 4.1. The second is a set of data collected at later 
point in time, and therefore not overlapping with the first one. For the second set of data the evaluation is 
done with regards to manually applied labels, described in Section 4.2. 

4.1 Evaluation on Pseudo-Automatically Annotated Data 
We evaluate performance on the threat actor detection task for each language model (and pre-training 
condition) on our held-out test set. The results are presented in Table 4-1, the metrics used are precision, 
recall, and F1-score (which is the harmonic mean of precision and recall). We note that all models are 
roughly similar in performance across each metric. The models pre-trained on tweets and web text 
(BERTweet and RoBERTa) seem to have a slight advantage, particularly in terms of recall. The effect of 
additional pre-training ranges from negligible to slightly positive. The best model with regards to F1-value 
is the RoBERTa model pre-trained on 250K tweets. However, BERTweet without any additional pre-
training has the highest precision, while still achieving a reasonable recall. 

Table 4-1: Evaluation results for the threat actor detection task on the pseudo-automatically annotated data. 
 
Language Model # Pre-training Tweets  Precision [%] Recall [%] F1 [%] 

BERT 
0  95.5 88.1 91.7 
25k  91.5 89.4 90.4 
250k  94.5 87.6 90.9 

DistilBERT 
0  94.8 83.9 89.0 
25k  92.3 88.1 90.2 
250k  92.9 90.0 91.4 

RoBERTa 
0  93.6 93.6 93.6 
25k  95.5 88.1 91.7 
250k  93.7 95.0 94.3 

BERTweet 
0  96.0 91.3 93.6 
25k  95.2 92.6 93.9 
250k  95.2 92.2 93.7 

The results for the threat actor extraction task (precision, recall, and F1-score on token-level) are presented 
in Table 4-2. Here we notice a more apparent positive effect of additional pre-training, a five percentage 
point increase in F1-score between no and full pre-training. We observe two possible reasons for the low 
recall. First, the model has difficulty with threat actor boundaries, e.g., the last few tokens in long threat 
actor names are often ignored. Second, the model often misses threat actor mentions in hashtags, which 
are much harder to detect since there is little surrounding language context to help the model. 

Table 4-2: Evaluation results for the threat actor extraction task on the pseudo-automatically annotated data. 

Language Model # Pre-training Tweets Precision [%] Recall  [%] F1 [%] 

RoBERTa 
0 71.1 15.6 25.6 
25k 67.7 16.7 26.8 
250k 72.1 19.5 30.7 

 
4.2 Evaluation through Manual Annotation 
As a complement to the evaluation on the pseudo-automatically annotated set of data, additional evaluation 
of the RoBERTa-based model (with extra pre-training on 250k cyber-related tweets) is performed through 
manual annotation, where manually applied labels are compared to the results of the detection and extraction 
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models. A set of 800 newly downloaded tweets was annotated, each tweet being read by three individuals11 
who would classify it as positive or negative and (in the positive case) record the name of the threat actor. A 
majority vote decided the final classification label. The only data cleaning performed on this data was 
manual removal of duplicates. 

The evaluation results for the detection task are shown in Table 4-3, where threshold value indicates how 
certain (on a scale from 0 to 1) the model must be that the analysed text does indeed mention a threat actor 
for it to be regarded as a positive example (in the evaluation on the pseudo-automatically annotated data the 
threshold value 0.5 is used throughout). The metrics used are once again precision, recall, and F1-score. The 
data which was manually annotated was sampled to be balanced between positive and negative predictions 
from the detection model at threshold value 0.5. This distribution is significantly different from the natural 
one, in our stream of cyber-related tweets only a very small fraction contains threat actors. 

Table 4-3: Evaluation results through manual annotation for the threat actor detection task at different 
threshold values. 

Language model Threshold Precision [%] Recall [%] F1 [%] 

RoBERTa 250k 
0.99 19.1 80.4 30.8 
0.9 15.9 91.1 27.1 
0.75 15.1 98.2 26.2 
0.5 14.0 100 24.6 

The model for threat actor extraction returns a value for each token in the text, indicating the probability for 
that token to be part of a threat actor name. This token-level information can be used to produce name 
suggestions consisting of complete words from the original text. These name suggestions, (threat actor) 
candidates, can be obtained through more or less strict conditions on the machine learning results. Here we 
test four such sets of conditions, all of which take into account both the how certain it is that the text contains 
a threat actor (detection threshold value) and the probability for individual tokens to be part of the name of a 
threat actor. The candidate types candH, candM, and candL use the detection threshold values 0.9, 0.75, and 
0.5 respectively. The candidate type candF also uses the threshold value 0.5, but is forced to find at least one 
candidate in each text. The conditions on token-level probability also differs between candidate types. 

The results of comparing12 the obtained candidates with the manually recorded threat actor names are 
presented in Table 4-4. The precision, recall, and F1-score metrics are calculated over the whole set of 
manually annotated tweets. An additional metric, which we call I-precision, is also introduced. This is the 
precision taking only those tweets into account which the annotators jointly considered to be mentioning a 
threat actor. This does not reflect the performance of the extraction model in reality, but gives us an idea of 
how it might perform under ideal conditions, i.e. in tandem with a perfect detection model13. 

                                                      
11  These individuals are not cyber security experts. Given the fact that tweets generally tend to be short and not necessarily 

convey a clear statement, this is a relatively challenging annotation task. 
12  This comparison was done in a somewhat more forgiving manner than that done for the detection task. A candidate was seen 

as correct if it (in all essential parts) overlapped a name suggestion given by at least one annotator. 
13  The extraction model, which was trained on positive examples only, to some extent assumes that the detection task is solved 

earlier on in the analysis flow. An underperforming detection model can therefore have a negative impact on the quality of the 
extraction results. 
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Table 4-4: Evaluation results through manual annotation for the threat actor extraction task. 

Candidate type Precision [%] Recall [%] F1 [%] I-precision [%] 
candH 11.4 61.5 19.3 53.3 
candM 10.1 69.2 17.6 53.6 
candL 8.4 76.9 15.1 51.5 
candF 8.7 73.8 15.6 53.9 

The results for the detection task differ significantly from those based on the pseudo-automatically annotated 
data (comparable at threshold value 0.5). In particular there is a massive drop in precision, whereas the recall 
is slightly increased. The results for the extraction task are not directly comparable, but the trend of low 
precision and higher recall is the same. The fact that the I-precision values are significantly higher indicates 
that the low precision of the detection model is a major contributing factor to the very low precision of the 
extraction model. 

To add one more perspective to the performance of the models, we conduct one additional evaluation, meant 
to reflect more user-like conditions, with the help of a purpose-built dashboard (see Figure 4-1). 

 

Figure 4-1: A dashboard designed for manual evaluation of machine learning models. It shows, among other 
things, the percentage of tweets classified as containing threat actors at different threshold values (pie chart), 

and top-10 lists for threat actor candidates, for a selected time interval. 

A fresh batch of Twitter data was downloaded and analysed by the machine learning models, over the 
course of two weeks. The results were then studied in 14 data intervals of 24 hours. For each interval the 
proportion of tweets classified as positive was recorded. The top-10 most frequent threat actor candidates 
for each candidate type were then manually14 sorted into the following categories: threat actor, malware, 
organization, person, acronym, other. The categories were chosen to cover the types of named entities we 
by experience knew were common among miss-classifications. The result of the manual categorization of 
top-10 candidates is illustrated in Figure 4-2, which for each candidate type and category shows the 
distribution of number hits per time interval (i.e., 14 data points for each category). 

                                                      
14 This work was done by one person only, however, as the dashboard allows access to multiple tweets for each candidate and 

thus provide more context it can be argued that this annotation is less subjective in nature than the one previously described. 
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Figure 4-2: Distribution of number of hits per 24-hour interval for each entity category, in the top-10 lists for 

each threat actor candidate type (candH, candM, candL, candF). 

The proportion of tweets classified as positive at threshold value 0.5 varies between 4.0% and 8.4%, with 
a mean of 5.4% over the whole time period. In other words, close to 95% of the tweets are filtered out, 
even at a low threshold. Since the natural distribution is very imbalanced this is good sign, it means that 
the model is significantly closer to the real distribution between positive and negative than the training 
data was. This is also encouraging with regards to the earlier indications of high recall15, as they are not 
obviously explained away by a massive overrepresentation of positive classifications. 

For candH, which has the strictest probability requirements, we see the highest mean number of actual 
threat actors among the top-10 at 2.4 (the other candidate types all have a mean around 2). The median for 
number of threat actors is 2 for all candidate types. All types has 0 threat actors in at least 1 of the 14 
intervals, candH has at most 6 within one interval, candM at most 5, and the other two at most 4. Regarding 
confusion with other entity categories the pattern is the same for all candidate types. The most common 
specific error the model makes is to mistake the name of a malware for the name of a threat actor. This is 
not surprising, since the language context of these entity types can be very similar or even identical – even 
a human reader may need background knowledge to distinguish between them. The other category is the 
most prevalent one, but no additional error categories were identified. 
                                                      

15  True recall is in reality impossible to calculate with huge data sources like Twitter, since we are unable to measure it over the 
entire set of data. 
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5.0 DISCUSSION 

The evaluation on the held-out test set yields very promising results in terms of both precision and recall, 
while the results of the second evaluation indicate that the precision is severely lacking. Additional iterations 
of data collection, annotation, and training would likely improve the performance. The reasonably high recall 
suggests that the detection model is capable of performing a relatively efficient filtering of tweets, where a 
large proportion of the interesting ones (in this case, those that mention threat actors) are kept while a large 
amount of the irrelevant ones can be automatically discarded. Most of the threat actor candidates provided by 
the extraction model are inaccurate, regardless of candidate type, but a top-10 list typically include one or 
two relevant suggestions. In a setting of semi-automatic analysis this could possibly be useful to some extent. 
One possible way of improving performance in the extraction task in particular, would be to leverage 
existing models for general named entity recognition (NER), either as a starting point for fine-tuning or in an 
ensemble arrangement alongside our model. 

The results of the different evaluations offer some insights regarding the possibilities and challenges of 
applying machine learning and language models to a domain-specific and niche problem for which there are 
no available data sets or established evaluation benchmarks. 

The large difference between the results of the two evaluations indicates that the underlying data sets 
represent different sections of the complete data stream (which is hardly surprising considering the fact that 
they were constructed in different ways and at different points in time) and that the models have not learned 
to generalize to a large enough extent. This underlines the importance of thinking through how data sets are 
sampled, especially when the distribution of data must deviate significantly from the natural one. 

Rule-based NLP techniques are useful tools for pseudo-automatic annotation of data, which is needed to 
enable data driven methods like supervised machine learning. If a noisy data source (such as Twitter) is used, 
some manual data cleaning may be necessary to make the data useable. It is important to consider not just 
what is included in the data set, but also if something is missing. In the threat actor case one potential path to 
improvement we have identified would be to include “better” negative examples in the training data, for 
example by specifically collecting tweets mentioning named malware, in an effort to help the model better 
distinguish between different types of entities. 

Another important question is whether the machine learning problem should be split into subtasks, and if so, 
how. In this case we use two models, one for detection and one for extraction of threat actors. It would be 
possible to split the task even further, for example by adding a model trained to determine if a tweet is at all 
related to cyber security to the beginning of the chain. Such a model could potentially filter out irrelevant 
topics, like “cyber bullying”, and thereby making the task of the threat actor detection model more clear-cut 
(as it can focus more on what differentiates threat actors from other cyber security-related concepts). 
However, relying too much on models earlier on in a chain comes with the risk of early errors propagating 
and confusing models further down the line. Our extraction model shows symptoms of this, as its 
performance (unsurprisingly) appears to be negatively affected by the poor precision of the detection model. 
Another option would, in this case, be to let the extraction model see large amounts of negative examples at 
training time and so hopefully teaching it to better deal with future detection model errors. Generally 
speaking, some experimentation may be needed for a new application when it comes to task design. Also, 
iteratively annotating data and retraining model as subtask performance is improved may be beneficial. 

How model performance should be evaluated is not always obvious, different evaluations may yield different 
results, as shown in the threat actor case. In the absence of established benchmarks, which are unlikely to 
exits for a niche problem, one must set the framework for the evaluation oneself. It is important to consider 
what potential biases and sources of errors a particular evaluation scheme might introduce. It may also be 
beneficial to not only look at classic metrics, but to also reflect on how the results may be used and what that 
means in terms of performance requirements. 
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6.0 CONCLUSIONS 

The use of pseudo-automatic annotation of data, through rule-based NLP techniques, for fine-tuning of 
language models in the context of cyber threat actor detection and extraction appears to be viable. However, 
the results of the secondary evaluation indicate that multiple iterations of data collection, annotation, and 
training may be needed. Evaluation under more user-like conditions suggests that the models are capable of 
producing results that could potentially be useful in a setting of semi-automatic analysis. 
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